
On the theory of the Mott transition in the paramagnetic phase

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1991 J. Phys.: Condens. Matter 3 1475

(http://iopscience.iop.org/0953-8984/3/11/009)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 10/05/2010 at 22:56

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/3/11
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J.  Phys.: Condens. Matter 3 (1991) 147551491, Printed in the UK 

On the theory of the Mott transition in the paramagnetic 
phase 
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Institute of Metal Physics, 620219 Sverdlovsk, USSR 

Received 19 July 1990, in final form 14 November 1990 

Abstract. A critical consideration of some approaches to the metal-insulator transition 
problem,startingfrom the many-electronrepresentation, iscarriedout within the framework 
of the Hubbard and classical HI models in the far-paramagnetic region. The analytical 
propertiesof the corresponding one-electron Green functions are discussed. the importance 
of terms of sufficiently high orders in l/z being demonstrated. The total energy, electronic 
specific heat and corrections to the local moment are calculated. The Hubbard-111 approxi- 
mation in the Hubbard model (but not in the s d  model) is shown to lead to difficultieswhen 
calculating thermodynamic properties 

1. lntroduetion 

The problem of the Mott transition (metal-insulator transition) driven by the inter- 
electron correlation [l] is, perhaps, one of the challenges in solid state theory. Recently, 
this problem has attracted a great deal of attention mainly in connection with the 
widespread point of view on the high-T, superconductors, which are considered as 
narrow-band systems near the Mott transition [2]. 

Beginning with the pioneering paper by Hubbard [3] (using the method of double- 
time Green functions) the entire arsenal of many-particle physics methods, such as the 
functional integral approach [4], the diagram technique [SI, the Schwinger formalism 
[6], the different variational methods [7-91 and the renormalization group method 
[lo] was applied in treating the metal-insulator transition problem. Nevertheless, the 
physical picture of the transition is still vague. In a large number of papers, startingfrom 
[3], the metal-insulator transition is identified with the confluence of the Hubbard 
subbands and with the disappearance of the Hubbard gap (the band is assumed to be 
half-filled). In the Hubbard [ll] model, such subbands are those of doubly and singly 
occtipied sites, respective!).. However, it should be emphasized that the Hubbard model 
is not the only one to give the metal-insulator transition. As we shall demonstrate 
further, such a transition is also possible within the s-d exchange model [12]. In real 
situations, the picture is intermediate between those in the s-d and Hubbard models. 
For example, in d-metal oxides the Mott transition takes place in one of the crystal-field 
splitsubbands(t,,ore,)on the backgroundofthe magneticmomentsin anothersubband 
[13]; the HI exchange model is also applied when describing the electron correlations 
of high-ir, superconductors [14]. 
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In the present paper we treat the metal-insulator transition problem in the para- 
magnetic phase of the Hubbard and s-d exchange models with the aid of the double- 
time Green function method in the representation of Hubbard many-electron X oper- 
ators.The useofthes-dmodelenablesone toestablish the roleofdifferentcontributions 
owing to the formally small parameter 1/2S, S being spin of the magnetic ions. Special 
attention is given to the analytical properties of the Green functions obtained and the 
‘evolution’ of the electron spectrum versus the inter-electron interaction parameter and 
the bare density of electron states. The paper is organized as follows. In section 2 
we calculate the one-electron retarded Green functions within the framework of the 
Hubbard and the classical s-d exchange models. In section 3 the simplest self-consistent 
equations, and in section 4 the Hubbard-111-type approximation and its analogue in the 
s-d model, are obtained. In section 5 the consistency of the approximations employed 
with the l/z-perturbation theory is discussed. The results on the metal-insulator tran- 
sition and the behaviour of some physical quantities (the specific heat and local moment) 
are presented in section 6 and section 7. In section 8 we present the results of the 
numerical calculations of the one-electron density of states (DOS) and the optical DOS. 
The analytical properties of the Green functionsobtained are considered in the appen- 
dix. 

2. Calculation of the one-electron Green function 

We treat the problem of the metal-insulator transition within the Hubbard model 

I $ =  xtkc:&,+ U E n n , , n , ,  
ko 

( tk  is the band energy and U is the Hubbard on-site repulsion) and the s-d exchange 
model 

( I  is the s-d exchange parameter, S, are the localized-spin operators and U are the Pauli 
matrices). Both models have similar properties, especially for the classical limit of the 
s-d model (S-m and IS-constant) which will be considered below. To take into 
accounttheHubbardsplittingof theconduction band(e.g. termeffects),itisappropriate 
to use the Hubbard [I51 many-electron representation 

where lid) is the complete set of the slates on askc i. Cor the model (I) ,  1. = 0, ?, 2. [io) 
being the empty state, liu) the singly occupied state with the spin projection U and /i2) 
being the doubly occupied state (a double). For the model (2) ,  h = M, b, e}, (p,  p}, 
{M, 2}, IiMO) being the empty state with the localized spin projection M, lip, cu(p)) the 
singly occupied state with the total on-site spin moment S 3- 1 and its projection p, and 
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liM2) the doubly occupied state. The interaction Hamiltonian takes the diagonal form 
in the representation (3) 

H,, = V X:2 (4) 

Hi,, = -IS 2 Xjm,pu + I ( S  + 1) Xffl.Pfl. (5) 

i 
S + t  s-+ 

U = - S - t  p = - s + i  

The one-electron operators c:, are expressed in terms of many-electron Xoperators by 

c:, =E(iylcf0jis)X,Y6. 

clo = X? + ux;-a 

YS 

For the Hubbard model 

and for the s-d model 

The components of the total on-site spin operator are given by 

S S + t  S-! 
Sf = M ( X Y M  + X M , % M . 2 )  + MXF";M.n  + 2 MXM,&M.fl 

M =  -S M = - S - !  M=-S+? 

5 

S;" = E [ ( S  + u M  + 1)(S - UM)] 'P(X ,M'~+ '  + Xy.%MC".2 ) 
M=-S 

s t t  

2 
M = - S - k  

s-! 

M = - S + i  

+ [(S + 1 + u M  + 1)(S + -$ - UM)]"ZX;wu.n'Mto~rr 

+ [(S - 4 + UM + 1)(S - 4 - u M ) ] ~ ~ ~ X ; " ~ " : ~ ' " ~ ~ .  

In the classical limit, for the paramagnetic state 
(Vk,,fb}) = (kkP g;& = 4 

and the transitions 0- a, p- 0,Z-t a, p-, 2 correspond to the same energy -IS = 
-J /Z  so that the Hamiltonian (2 )  takes a form similar to that of (l), and we have 

Consider the calculation of the one-electron anticommutator retarded Green function 

in the classical s-d model (S -t a, J = constant). From the equations of motion for the 
Green functions in the right-hand side of (15) one gets 

Lfko7 HmI = -(J/21f,, [gkm Hm1= ( J P ) g , r  (14) 

GdE) = ( (C~OIC:O))E = ( ( f d C 1 0 ) ) ~  f ((9*0lCLo))~ (15) 



where 6A = A - (A) .  Summing equations (16) and (17) we obtain 

1 
Ek 

with S; being the Fourier components of spin-density operators. Here we have used the 
anticommutation relations 

Equations (18) and (23) are exact in the quasiclassical limit. After the decoupling we get 

where& = ( S , .  S-J. The decoupling (24) holds to first order in 112, z beingthe nearest- 
neighbour number (see section 5). Substituting (24) into (18) we get 

Gk(E) = @k(E)LV(E) - @k('%k]-' (25) 
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where 

y ( E )  = E  - J 2 / 4 E  (27) 
is the inverse locator in the Hubbard-I approximation. 

A similar consideration for the Hubbard model (compare also [16]) yields the same 
expressions (25) and (26) with the replacement S - t  1, J- U, if we neglect the terms 
proportional to Fermi excitation occupation numbers and charge fluctuation correlation 
functions, which are formally small in 1/2S. 

3. The simplest self-consistent approximation 

It is easy to see that equations (25) and (26) yield a gap in the density of states for 
arbitrarily small J. The most natural way to obtain a self-consistent expression for the 
Green function, describing the metal-insulator transition, is to replace tq+ @,(E)t, in 
the denominator of the second term of (26). Then we have 

Such a replacement is in agreement with the result of the l/z-perturbation theory in the 
classical HI model up to l/zz (see section 5). 

For& = S(S + 1) (far-paramagnetic region), Q(E)isindependent of k, andtheself- 
consistent equation for the resolvent function 

1 1 
N o @ )  = - - Im [R,(E)] 

ff (33) 

N @ )  being the bare DOS, and Y = x/(ZS)~. It should be noted that in the case of the 
classical s-d model (Y = a) the Green function (25) has no poles in the upper half-plane 
of complex energy variable. For the Hubbard model (Y = a) the function (25) does not 
possess all the analytical properties of a retarded Green function; it is not analytic in the 
upper half-plane (see the appendix). This results in the violation of the sum rule 

L E  1 d E N ( E ) = I .  (34) 

A self-consistency equation in the Hubbard model, similar to that considered above, 
yields the same results as those of the Zaitsev [5] approach. For both the Hubbard and 
the s-d models the self-consistency procedure violates analytical properties. However, 
this violation is not so important as that resulting from the non-analyticity of the 
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‘unrenormalized’ Green functionin thecaseoftheHubbardmodel (seesection8).Thus, 
the use of the classical +d model enables one to improve partially the description of the 
metal-insulator transition. 
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4. The Huhbard-111-type self-consistency equation 

Equation (26) corresponds to Hubbard‘s [3] scattering corrections (see equations (31), 
(32) of that paper). It should be noted that the ‘resonance-broadening correction’ [3] 
vanishes in the classical limit. Thus, the alloy analogy is more natural for the classical 
s-d model than for the Hubbard model. 

To obtain an analogue of the Hubbard-111 approximation in the classical s-d model 
we rewrite equations (25) and (26) as 

&(E) = Y(E) /@x(E)  = [ Y ( E )  - Ax(E)l/[l - L ( E ) / E I  (35) 

In the far-paramagnetic region, equations (35) and (36) coincide with equations (32) 
and (33) in 131. The Hubbard-Ill-type approximation corresponds to replacing y (E)  in 
(36) by the exact inverse locator Fk(E) (with appropriate quasimomenta) defined by 

G i ’ ( E )  = F,(E) - t* (37) 

which yields 

Then for ,yq = constant the Hubbard-111-type expression for the Green function may be 
represented in the form (26) with 

@(E) = 1 + 152Y/E’@(E)I[Y(E)R(E)/@(E) - I1/3 - (4Y/Q(E) - 1) 

x IY(E)R(E)/@(E) - 1D (39) 

where Y = a .  Equation (39) holds for the Hubbard model (see 131) if we put Y = a. 
Equations (25) and (39) may be written as 

Ck(E) = [ E  - tk  - Z(E)]-’ 

Z(E)  = (.P/l6Y)R(E)/{l + Z(E)R(E)  + [(4Y)-’ - l]ER(E)}. 
(40) 

(41) 

For the classical s-d model (Y = b )  the last term in the denominator of (41) vanishes, 
and equation (41) is exactly the CPA result for a binary alloy with equal concentrations 
of components which correspond to the states 01 and p .  For the Hubbard model the 
situation is more complicated owing to the quantum ‘resonance-broadening’ corrections 
131. Note that approaches using the static approximation within path iiitegral formalism 
in the Hubbard model yield cPA-type self-consistency equations and usually neglect 
the resonance broadening corrections, i.e. are essentially quasiclassical. Unlike the 
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approximation in the previous section, the Hubbard-I11 approximation satisfies nec- 
essaryanalyticproperties (see, e.g., [17]). 

5. Comparison with the llz-perturbation theory 

Now we discuss the approximations (32) and (39) from the viewpoint of the 1/z- 
perturbation theory. Hereafter we consider the far paramagnetic case. Proceeding as in 
section 2,  the sequence of equations of motion for the one-electron Green function in 
the classical s-d model is obtained in the form 

It follows from (31), (32) and (42) that the Green function may be represented as 

G d E )  = % ( E ) / [ Y ( J ~  - tx@dE)I (46) 

(47) 

where 

WE) = 1 + {nk(E)}in 

Q&E) = t q / W )  - tql (49) 
where the subscript irr means that the contributions which diverge at y ( E )  = t, must be 
omitted. In the classical limit S+ m, the spin correlation function may be decoupled to 
obtain 

K,, = x = S(S + 1) 

Kq,q,q, = X 2 ( 6 q , + q z  + f'q,+q, - SSq,+q,)  - 8X2. 

(50) 

(51) 
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Consider the expansion of (47) in the serieswith respect to 1/z, nth order corresponding 
to n summations over quasimomenta 

A 0 Anokhin et ai 

I 

@,(E) = 1 + z @p(E). 
" = I  

To second order in 1/z. one obtains 

4 . I 4  
@!?(E) = (z) xz Q'Q - xz Q~-,Q,-,Q, (54) " 3 2 S E  ~ 

Pp 

Retaining only the first-order contribution in (52) we obtain the approximation (26). 
Noting that the first term in (54) gives the renormalization of the denominator in (26) 
up to the first order in 1/z and considering the higher orders in the expansion (47) we 
may extract the infinite sequence corresponding to the approximation (32). In the third 
order, there arises the term 

which comes from the last term in (51) (all spins on one site), and also a large number 
of 'connected' terms. The term (55) differs from the third-order term arising from 
the expansion of the Hubbard-I11 approximation by a factor of 3. (Note that for the 
corresponding SU(N) model this factor reads N / ( N  + l), so that the discrepancy van- 
ishes in the large-N limit.) Picking out from the second term in (54) the contribution on 
asite (i.e. averagingover k) we may restore the agreement. Carryingout the same trick 
in all corresponding higher-order terms of the perturbation series we obtain 

Replacing 

and using the transformation 

we rederive equation (39) withy = a. Thus, from the viewpoint ofthe l/z-perturbation 
theory in the classical s-d model, the Hubbard-I11 self-consistent approximation differs 
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from the simplest one by terms of sufficiently high order, so that the latter are rather 
important for fulfilling analytical properties. 

6. The metal-insulator transition 

As follows from (25) and (31) the density of states on the Fermi level ( E  = 0) does not 
vanishif theasymptotical behaviourof@(E) coincideswith thatofy(E),i.e. thequantity 

a(J) = lim [y(E)/@(E)J (59) E+O 

is finite. Then we obtain the equation for a(J) 

J2/4 = 4Ya2[otR,3(~) - 11 (60) 

in the approximation (32), and 

J2/4 = 4Y4a - R,'(a)] (61) 

in the Hubbard-111 approximation. Near the metal-insulator transition, a i s  large in the 
absolute value (real in the insulator phase and imaginary in the metallic phase) and is 
divergent at the transition point, so that we may use the expansion 

~ ~ ( a )  = i/a + p 2 / ( u 3  + p 4 / a 5  + . . . (62) 

where pn are the moments of the bare DOS which is assumed to be symmetric. Then we 
obtain from both (60) and (61) the critical value of J 

(63) 

(64) 

7 Vel = ~ V ~ P Z  

a(J+ J,) = (2M/Jc(J - J,))"* 

where M = p4 and M = p4 - p! for the approximations (32) and (39), respectively. For 
the semielliptic conduction band, equations (60) and (61) may be solved exactly, which 
yields the results of [3 ,5 ] .  Using the expansion 

F(E)  = y(E) /@(E)  = a(J) + P(J)E + . . . (65) 

we obtain 

p ( J )  = -a4(J ) /8YM.  (66) 

For the insulator phase the expansion is valid if E lies in the energy gap (outside the gap, 
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we must use the expansion in inverse powers of E). Thus the width of the gap A is 
estimated from the condition ICY - lPlA which yields 

A 0 Anokhin et a1 

A a WIJ,12!3(2M)-'/z IJ - Jc13'*O(lJl - IJcI). (67) 

Using the expansion (65), one sets the scaling behaviour for the function F(E, I )  near 
the point of the Mott transition ( J +  J c ,  a+ m):  

F(E, J )  = a ( J ) f ( E / A ( J ) )  = a ( J ) f ( E a 3 ( J ) ) .  (68) 

7. Total energy, local moments and thermodynamic properties 

Averaging the Hamiltonian we derive for the s-d model 

( H )  = (&in) - 21(S. s) si = a E cl,amPciP. (69) 

Using the equation of motion for the one-electron Green function and the spectral 
representation yields 

CO 

2 J  d E  Ef(E)N(E)  - (Hk,") = -2l(Ss) 

(H) = 2 J dE Ef(E)N(E)  (70) 

where thefactorof2comesfrom thesummationoverspinprojection. At thesame time, 
for the Mubbard model, where the local moments and current carriers belong to the 
same electron system, we have 

d E  Ef(E)N(E) - ( H d  = 2 W  

(H) = (- :) 5 I dE ( E  + (&E) ImCko(E) (71) 

with N 2  = (n, , n , , )  the number of doubles. Near the metal-insulator transition, sub- 
stituting (68),  (30) and (31) into (70) and (71) gives the singular contribution to ( H )  at 
T=O: 

6 ( ~ )  a I ~ ( I ) I - ~  E I J  - J , I ~ ~ S ( ~ I , ~  - [JI) (72) 

which corresponds to the 3t-order transition (cf [5 ] ) .  We see that large one-electron 
damping leads to the weakening of the singularity in the total energy. (In the absence of 
the onc-electron damping and for thc squaie rooi behaviour of the DOS near the gap, 
N(E)  0~ ~; the transition is of 24 order.) For the square of the total spin on a site we 
have 

( S L )  = S(S + 1) - 2 v s  + O(1) 
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0 

J 1  

Y U 

-1 0 1 2 
2 ZH, -2 I) I ! I , - I  

-2 -1 0 1 2 

E E 
Figurel.Theone-electron Dosscalculatedin theapproximation (26) for(a)semiellipticand 
(b) rectangular bare DOSS. 

where v = -(Ss)/S (for the Hubbard model, (Sz) = S(1 - 2Nz)) .  The spectral rep- 
resentation gives 

and for J - t  2 = we obtain 

v = [ - 4 + O ( 1 / J 2 ) ] s g n J  (74) 

so that in the extremely narrow-band limit the total spin on a site equals S 2 4. 

from (70) 
Now we calculate the electronic specific heat C(T). For the s d  model we obtain 

C(T) = J ( H ) / J T =  ( x ~ / ~ ) ~ N ( E ~ ) T .  (75) 

Formally, this expression has a Fermi-liquid-theory form. However, N ( E )  itself is 
determined by non-quasiparticle states (the one-electron damping is very large). On 
the other hand, for the Hubbard model, equation (71) gives 

(76) 

Near the transition ( U -  U<),  the second term in the curly brackets dominates and 
we obtain from (76) 

C(T) = (z2/3){N{EF) - (l/z)(a/aE) Im[F(E)R(E)]I ,=, , }T.  

C(T) = - ( Z 2 / 3 ) ( p z / 3 X b f )  Im[ol(U)] T <  0. (77) 

Using the Hellman-Feynman theorem 

N z  = J%(U)/aU 

and restoring the free energy 9 we obtain at U +  U, 

C ( T )  - T a 2 % / J T Z  = t ( ~ ’ / 3 ) 2 N ( E p ) T  (78) 

(where we used equations (63) ,  (6.1) and (66)), so that the calculated C(T) is smaller 
than that of non-interacting electrons with the DOS N ( E ) .  This result is rather unusual 
and drastically different from that for Fermi-liquid systems where correlation effects 
lead to C(T) enhancement. 
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I C 1  

J 

~~ 0 ,  

J J 1 

2 -2 E -1 
0 1 

E E 

I C 1  

0 

1 

2 
- 2  -1 1 

E 

Figure 2. The one-electron DOSS calculated in the 
simplest self-consistent approximation(32) for(u) 
semieliiptic, (b)  rectangular and ( E )  simple cubic 
lattice bare Doss ( J , =  I ,  1.155 and 0.816. 
respectively). 

Thus. the approximations employed are not quite satisfactory for calculating the 
specific heat in the Hubbard model. At the same time, for the classical s-d model the use 
of the Hellman-Feynman theorem, Y = aS/aJ, gives the same result for C(T) as (75). 

8. Results of numerical calculations 

The D O S S N ( E ) ,  calculated in the classical s-d model for the non-self-consistent approxi- 
mation (26), the simplest self-consistent approximation (32) and the Hubhard-I11 
approximation are shown in figures 1-3 versus J for some hare DOSS (the results in the 
Huhbard model are qualitatively similar). Despite the violation of analytical properties 
(leading to occurrence of 'false' singularities at E = 2 J/2), the results for the approxi- 
mation (32) are on the whole similar to those for the more complicated Hubbard-Ill 
approximation. The violation of the normalization condition (34) is numerically small 
atnot toolargeJ. On theother hand,for theHubbardmodel, whereanalyticalproperties 
are violated even before carrying out the self-consistency procedure, the violation is 
strong (table 1). 

Besides the presence of the energy gap at small J (which is, however? very small), an 
important drawback of the non-self-consistent approximation is the occurrence of the 
non-physical DOS peaks near the band edges, which are smeared for more advanced 
approximations. It should be noted that the form of N ( E )  for the self-consistent approxi- 
mations is weakly dependent on the bare DOS form at not too small J (in particular, the 
Van Hove singularities for the simple cubic lattice are smeared). This is due to a large 
electron damping. 
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0 

1 

2 
-2 -1 0 1 2 

E 

J 1 E i z  
. . . .  

-2 -1 0 1 

E 

0 

J 1  

2 
- 2  -1 0 1 7 

E 

Figure 3. The one-electron DOSS calculated in the 
Hubbard-I11 approximation (39) lor different 
bare Doss: (a) semielliptic. ( b )  rectangular and (c) 
simple cubic lattice. 

Table 1. The valuesot the normalization factor L (34) lor diflerent approximations and bare 
DOS: I,  approximation (26) lor the Hubbard model; 11. self-consistent approximation (32) 
for the Hubbard model; 111, self-consistent approximation (32) for the quasiclassical +d 
model. 

Normalization tactor L 

Semielliptic bare DOS Rectangular bare DOS 

J I  I1 111 I I1 111 

0.00 1.00 1.00 1.00 1.00 1 .00 1.00 
0.25 0.91 0.97 0.98 0.92 0.96 0.99 
0.50 0.97 1.02 1.00 0.92 0.97 0.99 
0.75 1.11 1.11 1.03 1.02 1.05 1.01 
1.00 1.22 1.19 1.05 1.14 1.12 1.02 
1.25 1.29 1.26 1.06 1.22 1.19 1.04 
1.50 1.38 1.27 1.07 1.27 1.24 1.05 
1.75 1.38 1.30 1.07 1.33 1.26 1.06 
2.00 1.40 1.33 1.07 1.34 1.28 1.06 

Simple cubic lattice 

I I1 111 

1.00 1.00 1.00 
0.90 0.98 0.98 
1.06 1.09 1.02 
1.21 1.17 1.04 
1.31 1.27 1.06 
1.37 1.31 1.07 
1.40 1.34 1.07 
1.43 1.35 1.08 
1.44 1.35 1.08 

The optical DOS 

p(w) = IEF d E N ( E ) N ( E  + w) (79) 
E F - W  

which defines the indirect optical absorption i s  shown in figure 4. One can see the 
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3 
2 

Figure 4. The optical DOS (79) calculated in the 
Hubbard-Ill approximation for the semielliptic 

0 bare DOS 

Table 2. Correlation energy f- (80) for the Hubbard model in units of the half of the bare 
band width, calculated within different approximations and for different bare DOSS: I, 
Hubbard-I approximation; 11, the approximation (26); III the simplest seli-consistent 
approwimation (32); (IV). Hubbard-U1 approximation for the semielliptic, rectangular and 
simple cubic lattice bare DOSS ( f , , . (J  = 0) = -0.42, -0.50 and -0.33. respectively). 

J I I1 I11 IV 

0.25 0.02 
0.50 0.02 
1 .00 -0.01 
1.50 -0.09 
2.00 -0.18 

0.25 0.03 
0.50 0.03 
1.00 0.01 
1 .50 -0.05 
2.00 -0.14 

0.25 0.02 
(1.5U 0.01 
I .00 -0.04 
1.50 -0.13 
2.00 -0.24 

Semielliptic bare DOS 
0.04 0.03 
0.08 0.04 
-0.01 -0.04 
-0.16 -0.16 
-0.34 -0.30 

Rectangular bare DOS 
0.04 0.03 
0.10 0 05 
0.04 -0.01 

-0.09 -0.11 
-0.24 -0.24 

Simple cubic lattice 
0.05 0.03 
0.03 0.01 

-0.08 -0.09 
-0.25 -0.23 
-0.43 -0.38 

-0.004 
-0.04 
-0.16 
-0.35 
-058 

-0,004 

-0.06 
- 0 , 3 O K  
-0.46 

-0.002 
-0.01 
-0.04 
-0.09 
-0.21 

broad maximum at w - Jcorresponding to transitions between the Hubbard subbands. 
Possibly, such transitions were observed in optical spectra of strongly correlated metals 
CrO, and MOO, [18] and of many Mott [l] insulators. 

Calculated for various approximation values of the correlation energy 

(fortheHubbardmode1, theenergyEisreferredtothechemica1 potentialp = U/Z)are 
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Table 3. The same data as table 2 but for the classical sd model. 

E," 

J I I1 111 IV 
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0.25 
0.50 
1 .oo 
1.50 
2.00 

0.25 
0.50 
1.00 
1.50 
2.00 

0.25 
0.50 
1.00 
1.50 
2.00 

-0.02 
-0.07 
-0.23 
-0.44 
-0.65 

-0.02 
-0.05 
-0.20 
-0.40 
-0.62 

-0.02 
-0.09 
-0.28 
-0.50 
-0.73 

Semieiliptic bare Dos 
-0.01 -0.01 
-0.05 -0.06 
-0.21 -0.24 
-0.41 -0.47 
-0.64 -0.72 

Rectangular bare DOS 
-0.01 -0.01 
-0.04 -0.04 
-0.18 -0.20 
-0.36 -0.41 
-0.59 -0.65 

Simple cubic lattice 
-0.02 -0.02 
-0.07 -0.0s 
-0.26 -0.29 
-0.47 -0.53 
-0.70 -0.79 

-0.01 
-0.05 
-0.20 
-0.41 
-0.64 

-0.01 
-0.04 
-0.17 
-0.36 
-0.58 

-0.ow 
-0.002 
-0.04 
-0.12 
-0.23 

listed in tables 2 and 3. One can see that, in the case of the Hubbard model, all the 
approximations under consideration (except the Hubbard-I11 approximation) yield a 
non-monotonic correlation energy behaviour with ( H )  > E,, for U < 1. On the other 
hand, for the s-d model, Eeon is negative and monotonic at all J .  

9. Conclusions 

Our consideration demonstrates that some simple Green function approaches using the 
many-electron representation and describing the metal-insulator transition are not quite 
satisfactory. i n  particuiar, approximaiions, which are simpler than that of Hubbard 
[3], violate the analytical properties of Green functions. The drawbacks may be 
partially removed by passing to the classical s-d model. From the viewpoint of the 
l/z-perturbation theory, the Hubbard-I11 approximation corresponds to the sum- 
mation of some sequence, where not even all second-order terms are treated accu- 
rately. 

The structure of the DOS within the seif-consistent approximations under con- 
sideration turns out to be rather poor; the detailed structure of the bare DOS is smeared, 
and no newnon-trivial physical featuresoccur. Apparently, the latter isdue to neglecting 
contributions which depend on Fermi excitation distribution functions and violate the 
rigid-band picture, thereby ieading i o  a szrong E-depcndcnce zf cas (e.g. Kondo-!ike 
effects[19]). Sucheffects have aquantumnature andcorrespond to termsformallysmall 
in 1/2S. Another factor important for the DOS structure is the short-range anti- 
ferromagnetic order and spin dynamics which may be included by consideration of the 
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q- and *dependences of the spin correlation function 
problems seems to be of great interest for the theory of strongly correlated systems. 

A 0 Anokhin et a1 

The treatment of these 

Appendix. Analytical properties of the Green functions 

Let us verify the analyticity in the upper half-plane of the Green functions used (this 
requirement is necessary for retarded Green functions). For the non-self-consistent 
version of (26) we consider 

*(E)  = 1 + (J*YIE*)ly(E)Ro(Y(E)) - 11 (AI) 
(for simplicity, we discuss the case x = constant). For the Hubbard model (J = U, 
Y = I) we have for arbitrary 0 < 6 < U / 2  

@(U/2 + is) = -2[1 - 36nN0(0)] + 0(6/U) 

and we get 

Im[R(U/2 + is)] = Im{Ro[2iS/@(LI/2 + is)]} > 0 

for S < [~JGN,(O)]-~. Thus the DOS is not positively defined and the function R(E)  = 
Z, G,(E) is not analytic in the upper half-plane. On the other hand, for the classical 
s-d model (J = 21s. Y = 4) 

Im[R(E)I = I ~ ~ R o [ Y ( E ) / @ ( J ~ I }  

Im[y(E)/@(E)] = Im{E[l + (J2/4E)Ro(y(E))]-’} > 0. 

is negative at Im E > 0 since 

For the self-consistent version, the function @(E) defined by the equation 

@(E) = 1 + [ J Z Y / E ’ Q ( E ) ] { [ y ( E ) / 4 ( E ) ] R ( E )  - 1) (‘w 
has the branch cut along the imaginary axis in the upper half-plane. To demonstrate this 
we calculate the quantity 

A = lim {Im[@( k J/2 + 6) - @( f J /2  - 6)]}. 
6-0 

Putting E = -C ( J / 2  k 6) + io in (m), we obtain two solutions: 
~~~ ~~ 

@ I  = Q(-CJ/2 + 0) = f (1  - iV16Y - 1) 
@ ~ - @ ( + J / 2 - 0 ) = 4 ( 1 + i m )  

where we have used the fact that I m  0 changes its sign when crossing the lines Re E = 
-C J/2. Thus A = -- andthe Green function (32) is non-analytic (has a branch 
cut) in the upper half-plane for both the Hubbard and the s-d models. The Hubbard-I11 
approximation (39), which corresponds to the CPA approximation, satisfies the necessary 
analytical properties. In particular, it follows from (39) that @(kJ/2) = 0. 
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